Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

William T. A. Harrison, ${ }^{\text {a }}{ }^{\text {* }}$

B. K. Sarojini, ${ }^{\text {b }}$ K. K. Vijaya Raj, ${ }^{\text {c }}$
H. S. Yathirajan ${ }^{\text {d }}$ and
B. Narayana ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, ${ }^{\mathbf{b}}$ Department of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India, ${ }^{\text {c }}$ Department of Chemistry, Mangalore University,
Mangalagangotri 574 199, India, and
${ }^{\text {d }}$ Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.052$
$w R$ factor $=0.127$
Data-to-parameter ratio $=9.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
A redetermination of 1,5-bis(4-methoxy-phenyl)penta-1,4-dien-3-one at 120 (2) K

The title compound, $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{3}$, is confirmed to crystallize with orthorhombic symmetry [Shan et al. (1999). Z. Kristallogr. New Cryst. Struct. 214, 381-382; Marsh (2004). Acta Cryst. B60, 252-253]. The molecule has crystallographically imposed twofold symmetry and the only possible intermolecular interaction is a weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bond.

Comment

Although the title compound (common name bischalcone), (I), was first prepared over 100 years ago (von Baeyer \& Villiger, 1902), it was not until 1999 that its single-crystal structure was determined (Shan et al., 1999). These workers described its structure as monoclinic (space group $C c$), with all atoms occupying general positions. Later, Marsh (2004) noted that the crystal symmetry of (I) is better described as orthorhombic (space group $A b a 2$), as confirmed by the present study. This compound is of interest to us on account of its substantial second harmonic generation (SHG) response (six times that of urea) to red light. The current structure determination at 120 (2) K represents a significant improvement in precision compared with the structure determined from roomtemperature data.

The geometric parameters for (I) are normal. The complete molecule is generated from the asymmetric unit by twofold symmetry, with atoms C 1 and O 1 lying on the rotation axis (Fig. 1). The dihedral angle between the two benzene rings in (I) is $56.92(9)^{\circ}$. A short H3 $\cdots 3^{\mathrm{i}}$ [symmetry code: (i) $1-x$, $1-y, z$] intramolecular contact of $2.18 \AA$ is present, which may help to explain the twisted conformation of the molecule about the central ketone group [pseudo-torsion angle C3$\left.\mathrm{C} 2 \cdots \mathrm{C} 2^{\mathrm{i}}-\mathrm{C}^{\mathrm{i}}=-45.1(4)^{\circ}\right]$. Atoms C3, O2 and C10 are displaced from the mean plane of the $\mathrm{C} 4-\mathrm{C} 9$ benzene ring by 0.111 (5), 0.024 (4) and 0.128 (6) Å, respectively.

The packing in (I), shown in Fig. 2, results in head-to-tail columns of molecules which all propagate along [001] in the same sense; the large SHG signal of (I) could be correlated with this lining-up effect. A PLATON (Spek, 2003) analysis of (I) identified a possible $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction (Table 1) that might help to crosslink these molecular columns. There are no $\pi-\pi$ stacking interactions in (I).

Received 14 March 2006 Accepted 14 March 2006

Experimental

Compound (I) was prepared according to a literature method (Vogel, 1999) and recrystallized from acetone by slow evaporation (m.p. 378$381 \mathrm{~K})$. Elemental analysis, found: C 77.25 , H 6.02%; calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{3}: \mathrm{C} 77.55$, $\mathrm{H} 6.12 \%$.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{3} \\
& M_{r}=294.33 \\
& \text { Orthorhombic, } A b a 2 \\
& a=7.2756(9) \AA \\
& b=33.5830(6) \AA \\
& c=6.132(5) \AA \\
& V=1498.3(12) \AA^{3} \\
& Z=4 \\
& D_{x}=1.305 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Data collection

Bruker-Nonius KappaCCD diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2003)
$T_{\text {min }}=0.956, T_{\text {max }}=0.997$
8103 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.127$
$S=1.10$
942 reflections
102 parameters
H -atom parameters constrained

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 10-\mathrm{H} 10 A \cdots \mathrm{O} 2^{\mathrm{i}}$	0.98	2.53	$3.442(4)$	154
Symmetry code: (i) $-x+1,-y+\frac{1}{2}, z+\frac{1}{2}$				

In the absence of significant anomalous scattering effects, Friedel pairs were merged prior to refinement. The H atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.95-0.98 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier) or $1.5 U_{\text {eq }}$ (methyl carrier). The methyl group was rotated to fit the electron density.

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK, DENZO (Otwinowski \& Minor, 1997) and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figure 1
View of (I), showing 50% displacement ellipsoids, with arbitrary spheres for H atoms. [Symmetry code: (i) $1-x, 1-y, z$.]

Figure 2
The molecular packing in (I), viewed along [100], with H atoms omitted for clarity.

We thank the EPSRC National Crystallography Service (University of Southampton, England) for data collection. One of the authors (BKS) thanks AICTE, Government of India, New Delhi, for financial assistance under the Career Award for Young Teachers (CAYT) scheme.

References

Baeyer, A. von \& Villiger, V. (1902). Chem. Ber. 35, 1201-1212.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Marsh, R. E. (2004). Acta Cryst. B60, 252-253.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Shan, Y., Zhou, H. \& Huang, S. D. (1999). Z. Kristallogr. New Cryst. Struct. 214, 381-382.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Vogel, A. I. (1999). Vogel's Textbook of Practical Organic Chemistry, 5th ed., edited by A. I. Vogel, B. S. Furniss, A. J. Hannaford, P. W. G. Smith \& A. R. Tatchell, p. 1033. London: Longman Group.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

